
Solutions of the Diophantine Equation 
x3 +y3 = Z3 - d 

By V. L. Gardiner, R. B. Lazarus and P. R. Stein 

1. Introduction. In 1955, at the suggestion of Professor L. J. Mordell, Miller 
and Woollett [1] investigated the integer solutions of the equation 

(1.1) x3+ 3 + Z3 = d 

for all integers 0 < d < 100. These authors carried out a numerical search in the 
range 

(1.2) IxI < IIy < IzI < 3200 

with the help of the EDSAC computer at Cambridge University; their results are 
tabulated in [1]. 

Mordell's original interest in this equation centered on the case d = 3; in particu- 
lar, he wanted to ktow whether there existed solutions in addition to the known 
triples x = y = z = 1 and x = y = 4, z = -5. For the range they considered, 
Miller and Woollett showed that in fact no further solutions existed. As a result of 
their happy decision to extend the search to other values of d, they discovered 
several other interesting properties of equation (1.1). Perhaps the two most strik- 
ing facts were the following: 

(a) For d = 2, all solutions in the range (1.2) belong to the family: 

(1.3) -6t2, -6t3 + 1, 6t3 + 1. 

(b) Over the range considered, equation (1.1) has no solutions for the 
values d = 30, 33, 39, 42, 52, 74, 75, 84, 87. 

With regard to (b), it should be remarked that, while it has long been known 
[2] that equation (1.1) has no solutions if d is an integer of the form 9m + 4, there 
is no knowin reason for excluding any other integer (except, of course, d = 0). One 
might be tempted to conjecture that all integers (except zero) not of the form 
9rn i 4 can be expressed as the sum of three cubes, minus signs allowed. (If this 
conjecture were true, it would solve the so-called "Easier Waring's Problem" for 
cubes [2], since it would then follow that all integers can be expressed as the sum of 
at most four cubes.) Miller and Woollett's results seemed to cast a certain doubt 
on the soundness of such a conjecture; as will be seen below, further numerical 
experimentation has served to make it unlikely that the conjecture is true. 

2. The Present Calculation. In the fall of 1961, Professor S. Chowla suggested 
to one of us (P.R.S.) that it would be of interest to investigate the case d = 3 for a 
much larger range of (x, y, z) values. Early in 1963 this suggestion was taken up 
and a program was written for the Laboratory's I.B.M. STRETCH Computer to 
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search for solutions of equation (1.1) in the equivalent form: 

(2.1) x3 + y3 =z3 -d. 

The range chosen was: 

16 
0?<x?<y?<2 = 65,536, 

(2.2) 0 < N < 216, N-z-xx 

0< ' d ? ' 999. 

It will be observed that this range excludes negative values of x, y, z, although d 
may have either sign. The small number of solutions (217 such) thus omitted were 
calculated separately on the MANIAC II Computer. 

3. Results. The actual solutions found are collected in a large table, a copy of 
which has been deposited in the UMT file. A limited number of copies have been 
retained by the authors for distribution to interested mathematicians. The table is 
divided into three parts; Table I and Table II cover, respectively, the ranges 
-999 < d < -2 and 2 ? d < 999. Only "primitive" solutions are tabulated; these 
are solutions in which x, y, z have no common factor. All "derived"' solutions (the 
terms go back to Miller and Woollett) can be recovered by multiplication: e.g., if 
d, x, y, z is a primitive solution, the associated derived solutions are d' = m3d, x'- 
mx, y = my, z mz, m -1, +2, +3, . Values of I d I which are themselves 
cubes have been omitted from the present calculation. There is a large number of 
solutions for each such case, and it was felt that their inclusion would make the 
tables too long. The additional solutions mentioned in Section 2, those for which 
one or two members of the triple (x, y, z) are negative, have been arbitrarily as- 
signed to Table II (positive d). With these conventions, the total number of primi- 
tive solutions found is 1873 for negative d and 2148 for positive d. Except for the 
cubes I d I = 1, 8, 27, 64 (which we do not list), our results are in exact agreement 
with those of Miller and Woollett over the range they considered. 

Finally, we have included a third table (Table III), which serves as a summary 
of our results. With the cubes omitted, the column labelled "d" lists all integers 
2 < d _ 999 which are not of the form 9m + 4. For each such entry, the column 
labelled N, indicates the number of primitive solutions of (2.1) with d positive, 
while N_ gives the corresponding number of solutions for negative d. This table is 
reproduced in the present paper (Table A). 

4. Discussion. (a) For the range considered, there are 70 values of I d I for 
which there exist no solutions of equation (2.1). In Table A these are indicated 
by an asterisk. There are in addition 12 values of I d I which have only derived 
solutions, viz: 

d -24, 80, 192, 250, 375, 384, 480, 624, 744, 768, 808, 960. 

5)2 of the 70 "excluded" integers are of the form 9m + 3, 13 are of the form 9mn + 2, 
4 are of the form 9m ? 1 and one (( d I = 180) is divisible by 9. 

One of the "excluded" values noted by Miller and Woollett has gone away, 
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TABLE A 

d N+ N_ d N+ N_ d N+ N_ d N+ N_ 

2 23 0 90 9 10 174 2 3 260 6 4 
3 1 1 91 4 3 177 1 1 261 3 2 
6 4 1 92 9 2 178 1 1 262 3 0 
7 1 2 93 2 0 179 1 4 263 1 1 
9 2 1 96 0 1 180* 0 0 264 0 3 

10 3 1 97 5 4 181 11 8 267 2 1 
11 4 1 98 2 2 182 2 2 268 0 1 
12 0 1 99 7 11 183 3 6 269 4 3 
15 2 1 100 3 0 186 1 1 270 2 1 
16 1 0 101 4 2 187 1 2 271 5 2 
17 4 3 102 0 1 188 6 3 272 4 5 
18 3 4 105 1 0 189 4 2 273 1 3 
19 2 2 106 3 2 190 16 11 276 0 1 
20 1 4 4 107 1 2 191 2 2 277 5 0 
21 3 2 108 3 1 192 0 0 278 3 5 
24 0 0 109 7 5 195* 0 0 279 7 9 
25 2 2 110* 0 0 196 2 4 280 3 5 
26 1 4 111 2 2 197 6 6 281 7 4 
28 3 3 1114* 0 0 198 4 2 282 0 1 
29 4 3 1115 2 1 199 2 3 285 1 2 
30* 0 O 1116 2 0 200 1 1 286 2 2 
33* 0 0 117 3 0 201 0 1 287 6 7 
34 5 5 118 6 10 204 1 1 288 3 8 
35 5 2 119 4 0 205 2 1 289 2 1 
36 1 3 3 120 0 2 206 1 2 290* 0 0 
37 2 1 123 2 0 207 4 5 291 1 0 
38 1 2 124 1 1 208 1 3 294 1 3 
39* 0 0 126 8 2 209 8 10 295 5 6 
42* 0 0 127 5 4 210 1 1 296 2 1 
43 4 4 128 13 3 213 1 1 297 1 2 
44 1 0 129 2 1 214 2 2 298 6 2 
45 1 3 132 1 0 215 4 1 299 1 2 
46 2 2 133 3 4 217 6 4 300 0 4 
47 2 2 134 4 5 218 4 2 303 1 1 
48 2 0 135 2 1 219 1 1 304 2 4 
51 0 1 136 0 1 222 0 1 305 3 3 
52* 0 0 137 5 0 223 5 3 306 4 4 
53 3 2 138 1 0 224 2 3 307 11 11 
54 4 1 141 2 1 225 10 5 308 1 1 
55 8 6 142 1 0 226 2 5 309 3 2 
56 1 2 143* 0 0 227 0 1 312* 0 0 
57 2 8 144 4 2 228 1 0 313 2 0 
60 2 1 145 1 1 231* 0 0 314 12 3 
61 1 1 146 2 3 232 4 3 315 7 4 
62 5 5 147 1 1 233 2 2 316 9 4 
63 5 3 150 0 1 234 0 1 317 0 2 
65 4 4 151 2 2 235 2 4 318* 0 0 
66 1 0 152 2 1 236 2 1 321* 0 0 
69 1 3 153 9 5 237 0 2 322 5 2 
70 2 4 154 3 6 240 1 0 323 7 15 
71 9 4 155 5 13 241 0 1 324 2 3 
72 1 1 156* 0 0 242 5 3 325 3 2 
73 5 2 159 1 4 243 1 1 326 1 1 
74* 0 0 160 4 2 244 6 3 327 1 0 
75* 0 0 161 8 8 245 2 3 330 5 1 
78 1 1 162 3 0 246 2 4 331 4 0 
79 3 0 163 4 2 249 1 1 332 1 4 
80 0 0 164 4 0 250 0 0 333 4 6 
81 2 1 165* 0 0 251 9 7 334 1 2 
82 1 2 168 1 2 252 8 5 335 2 5 
83 12 4 1169 4 0 253 7 4 336 0 2 
84* 0 0 170 3 5 254 1 0 339 2 3 
87 1 0 171 7 3 255 3 1 340 1 0 
88 3 2 172 0 1 258 3 0 341 6 3 
89 0 3 173 1 1 0 259 3 5 342 6 15 
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TABLE A-Continued 

d N+ N_ d N+ N_ d N+ N_ d N+ N_ 

344 3 2 429 0 2 513 2 1 596 4 1 
345 1 0 430 2 2 514 1 6 597 0 1 
348 0 2 431 1 2 515 2 2 600* 0 0 
349 4 6 432 1 2 516* 0 0 601 8 4 
350 4 5 433 5 12 519 6 4 602 4 6 
351 4 2 434 9 3 520 2 0 603 13 6 
352 2 1 435* 0 0 521 7 8 604 6 4 
353 2 0 438 1 1 522 1 1 605 1 2 
354 1 0 439* 0 0 523 2 3 606* 0 0 
357 2 1 440 1 1 524 8 2 609* 0 0 
358 1 6 441 10 3 525 2 2 610 6 5 
359 5 3 442 6 3 528 0 1 611 0 3 
360 3 1 443 1 0 529 1 0 612 2 4 
361 3 2 444* 0 0 530* 0 0 613 3 2 
362 1 1 447 4 2 531 8 10 614 0 1 
363 1 1 448 1 3 532 10 10 615 4 1 
366* 0 0 449 11 9 533 1 5 618* 0 0 
367* 0 0 450 2 3 534* 0 0 619 1 2 
368 1 2 451 1 2 537 0 2 620 2 1 
369 5 3 452* 0 0 538 6 1 621 2 0 
370 3 5 453 0 1 539 6 4 622 5 2 
371 2 0 456 2 2 540 5 7 623 6 4 
372 2 3 457 2 2 541 8 5 624 0 0 
375 0 0 458 2 1 542* 0 0 627* 0 0 
376 1 0 459 2 2 543 1 1 628 0 2 
377 1 4 2 460 3 1 546 1 1 629 12 9 
378 17 3 461 5 6 547 3 7 630 7 1 
379 11 7 462* 0 0 548 0 3 631 6 6 
380 3 0 465 0 3 549 3 1 632 1 3 
381 1 3 466 1 1 550 2 1 633* 0 0 
384 0 0 467 6 12 551 3 2 636 1 0 
385 5 1 468 6 3 552 0 1 637 2 2 
386 5 1 469 6 8 555 0 1 638 11 13 
387 5 4 470 4 2 556* 0 0 639 5 5 
388 4 3 471 1 0 557 3 3 640 1 3 
389 1 1 474 1 1 558 8 5 641 1 0 
390* 0 0 475 2 9 559 6 6 642 1 0 
393 1 2 476 5 7 560 6 4 645 4 3 
394 0 1 477 5 3 561 2 2 646 2 0 
395 1 2 478* 0 0 564* 0 0 647 6 6 
396 2 4 479 1 1 565 0 1 648 1 2 
397 5 1 480 0 0 566 4 3 649 5 6 
398 5 8 483 1 0 567 4 4 650 2 0 
399 2 0 484 3 5 568 1 2 651 5 2 
402 0 1 485 1 1 569 2 2 654 1 1 
403 1 1 486 3 6 570 0 4 655 1 2 
404 2 1 487 6 2 573 1 1 656 4 3 
405 15 7 488 0 1 574 0 3 657 16 5 
406 6 2 489 2 5 575 7 8 658 8 5 
407 6 2 492 1 0 576 1 2 659 4 2 
408 1 0 493 2 3 577 8 1 660* 0 0 
411 1 2 494 1 3 578 1 2 663* 0 0 
412 1 2 495 7 4 579* 0 0 664 5 0 
413 8 2 496 5 6 582 2 1 665 7 10 
414 16 4 497 1 3 583 1 0 666 5 4 
415 4 11 498 2 1 584 0 3 667 3 4 
416 1 0 1501* 0 0 585 1 1 668 2 2 
417 0 3 502 1 0 586 3 2 669 0 2 
420* 0 0 503 7 3 587 3 4 672 1 1 
421 6 8 504 1 1 588* 0 0 673 3 5 
422 1 0 505 5 8 591 2 0 674 4 3 
423 1 1 506 2 2 592 0 1 675 0 1 
424 3 2 507 1 2 593 4 1 676 1 0 
425 1 1 510 3 1 594 6 3 677 3 1 
426 2 0 511 7 4 595 2 2 678 2 5 
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TABLE A-Continued 

d N+ N_ d N+ N_ d N+ N_ d N+ N_ 

681 1 0 765 0 1 848 7 1 933* 0 0 
682 2 1 766 5 4 849 2 0 934 0 1 
683 6 2 767* 0 0 852 0 1 935 7 2 
684 6 2 768 0 0 853 6 5 936 2 1 
685 8 5 771 4 2 854 6 2 937 10 7 
686 1 0 772 2 0 855 12 15 938 4 4 
687 2 4 773 0 4 856 2 5 939 0 2 
690 2 0 774 0 2 857 5 2 942 0 11 
691 1 1 775 1 5 858 1 0 943 3 6 
692 5 4 776 3 0 861* 0 0 944 1 5 
693 3 6 777* 0 0 862 3 7 945 2 2 
694 10 12 780 1 0 863 4 3 946 8 3 
695 1 1 781 2 2 864 3 1 947 2 1 
696 0 1 782 0 2 865 1 2 948* 0 0 
699 1 1 783 7 3 866 2 1 951 2 0 
700 2 2 784 0 2 867 4 3 952 2 0 
701 13 5 785 8 5 870* 0 0 953 5 5 
702 0 2 786* 0 0 871 0 1 954 2 3 
703 3 7 789* 0 0 872 6 2 955 2 0 
704 1 0 790 7 1 873 5 3 956 3 0 
705 0 1 791 8 1 874 12 11 957 4 1 
708 1 0 792 7 7 875 2 3 960 0 0 
709 2 0 793 2 1 876 2 3 961 4 1 
710 1 5 794 3 0 879 3 4 962 2 2 
711 1 2 795* 0 0 880 0 2 963 5 2 
712 3 0 798 1 5 881 10 12 964* 0 0 
713 4 3 799 2 3 882 3 7 965 5 4 
714 3 1 800 0 1 883 6 10 966 1 0 
717 1 0 801 5 4 884 0 1 969* 0 0 
718 0 1 802 3 1 885 2 3 970 2 1 
719 2 2 803 2 1 888 1 0 971 0 1 
720 7 6 804 3 2 889 1 1 972 4 3 
721 5 7 807 1 0 890 2 3 973 5 4 
722 2 9 808 0 0 891 3 0 974 1 7 
723 1 1 809 6 6 892 5 3 975* 0 0 
726 1 0 810 4 3 893 1 2 978 0 1 
727 4 4 811 11 12 894* 0 0 979 4 4 
728 5 1 812 1 2 897 0 1 980 5 5 
730 3 0 813 2 2 898 2 0 981 4 9 
731 1 2 816 1 0 899 6 6 982 1 0 
732* 0 0 817 1 0 900 1 2 983 3 2 
735* 0 0 818 8 14 901 4 2 984 3 0 
736 5 6 819 7 2 902 5 4 987 1 2 
737 1 2 820 13 13 903* 0 0 988 5 3 
738 2 0 821 1 2 906* 0 0 989 7 3 
739 3 2 822 1 0 907 2 2 990 3 4 
740 3 2 825 4 3 908 0 1 991 4 4 
741 2 0 826 1 0 909 5 7 992 0 1 
744 0 0 827 10 7 910 1 0 993 2 5 
745 1 1 828 4 2 911 13 8 996 0 1 
746 2 5 829 3 3 912* 0 0 997 3 1 
747 1 1 830* 0 0 915 0 1 998 4 1 
748 5 8 831 0 2 916 1 2 999 2 0 
749 2 4 834* 0 0 917 4 3 
750 1 0 835 2 1 918 10 5 
753 1 0 836 0 1 919 6 2 
754* 0 0 837 4 5 920 0 1 
755 17 11 838 3 1 921* 0 0 
756 0 2 839 8 1 924 3 1 
757 8 2 840 1 2 925 4 4 
758* 0 0 843 0 1 926 3 2 
759 0 1 844 1 2 927 1 3 
762 2 0 845 0 2 928 2 1 
763 0 5 846 4 7 929 0 1 
764 5 4 847 6 2 930 0 3 
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namely d d I = 87. The solution lies slightly beyond the range they considered: 

(1972)3 + (4126)3 = (4271)' - 87. 

For I d = 96, Miller and Woollett found only one derived solution. There is 
actually a primitive solution for this case, but it lies well beyond their range: 

(10853)3 + (13139)3 = (15250)3 + 96. 

In general, it is rather risky to draw conclusions from the experimental evidence, 
even with a search as extensive as the present one. For example, I d I = 227 and 
I d I= 971 each have only a single solution, lying relatively close to the boundary 
of the search region: 

(24579)3 + (51748)3 = (53534)3 + 227 

(7423)3 + (55643)3 = (55687)3 + 971. 

Many other such examples can be found in our large table of solutions. Neverthe- 
less, it is in our opinion rather unlikely that all the missing I d I's wil turn out to 
be expressible as sums of three cubes. It would be of interest to attempt a proof 
that, say, 30 cannot be so expressed. 

(b) All solutions for I d I = 2 were found to belong to the parametric family 
(1.3). So far we have only succeeded in identifying one other family which is, in 
fact, a simple extension of (1.3). For I d = 128, all solutions are given by the 
formula: 

(4.1) x = 6t2, y= -4 + 3t3, z = 4 + 3t3, d = 128. 

If t is eveen, the solutions are the derived ones associated with d = 2, in = 4, but 
for odd t we get a new primitive family. (The existence of this parametric family 
was noted in [1].) 

(c) The case i d I = 3 was found to have no new solutions. I d I = 12 may 
also be of theoretical interest; it is the smallest integer that appears to have only a 
single solution: 

73 + 103 = 113 + 12. 

The next interesting case is I d = 24, which, in fact, has only the derived solu- 
tions: 

(-2)3 + (-2)3 = (2)3 - 24, 

83 + 83 = 103 + 24. 

Then, of course, comes d = 30, the smallest integer for which no solution what- 
soever has been found. 

(d) As a final remark, we point out that our table affords an explicit decomposi- 
tion into 4 or fewer cubes for every integer from 1 to 999. In particular, every num- 
ber of the form 9m + 4 in our range turns out to differ by a cube from a number 
for which one or more decompositions into 3 cubes has been found. 
Los Alamos Scientific Laboratory 
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